Decision-Theoretic Inspection Planning Using Imperfect and Incomplete Data

Abstract

Attempts to formalize inspection and monitoring strategies in industry have struggled to combine evidence from multiple sources (including subject matter expertise) in a mathematically coherent way. The perceived requirement for large amounts of data are often cited as the reason that quantitative risk-based inspection is incompatible with the sparse and imperfect information that is typically available to structural integrity engineers. Current industrial guidance is also limited in its methods of distinguishing quality of inspections, as this is typically based on simplified (qualitative) heuristics. In this paper, Bayesian multi-level (partial pooling) models are proposed as a flexible and transparent method of combining imperfect and incomplete information, to support decision-making regarding the integrity management of in-service structures. This work builds on the established theoretical framework for computing the expected value of information, by allowing for partial pooling between inspection measurements (or groups of measurements). This method is demonstrated for a simulated example of a structure with active corrosion in multiple locations, which acknowledges that the data will be associated with some precision, bias, and reliability. Quantifying the extent to which an inspection of one location can reduce uncertainty in damage models at remote locations has been shown to influence many aspects of the expected value of an inspection. These results are considered in the context of the current challenges in risk based structural integrity management.

Publication
In Journal of Data Centric Engineering

Related