TLDR This is part 2 of an article on fitting a Bayesian partial pooling model to predict expected goals. It has the benefits of (a) quantifying aleatory and epistemic uncertainty, and (b) making both group-level (player-specific) and population-level (team-specific) probabilistic predictions.
TLDR The Expected Goals (xG) metric is now widely recognised as numerical measure of the quality of a goal scoring opportunity in a football (soccer) match. In this article we consider how to deal with uncertainty in predicting xG, and how each players individual abilities can be accounted for.
TLDR Logistic regression is a popular machine learning model. One application of it in an engineering context is quantifying the effectiveness of inspection technologies at detecting damage. This post describes the additional information provided by a Bayesian application of logistic regression (and how it can be implemented using the Stan probabilistic programming language).